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Abstract. Quality control of postharvest fruits is moving to substitute
traditional sensory testing methods for more reliable quantitative methods.
Ripening in fruits, such as tomatoes. is a complex phenomenon which affects
chemical and physiological properties as function of time. Attempts to solve the
problem of ripening classification have been focus on single sensors: however,
there is not yet a complete solution. In this work. data fusion from different
non-destructive sensors implemented through a probabilistic neural network is
used to improve the quality control of ripening in tomato fruit. Two
independent sensors. a novel non-destructive acoustic impact and a colorimeter
technique were used. The effect of the probabilistic neural network parameters
was cxplained by an analysis of Bayes error. The acceptance rate as function of
the number of feature is analyzed. The results showed that the error
classification rate was reduced from 60% to 10% using the proposed data fusion
scheme.

1 Introduction

The goal in quality control of postharvest fruits has been to substitute traditional
sensory testing methods for more reliable and quantitative methods by correlating
quality properties with properties that can be quantitatively measured. Firmness has
been used by several researchers to describe internal and superficial properties and it
is considered an important quality characteristic of fresh postharvested tomato fru‘its.
whole or sliced [1]. Color change is another important parameter affected by ripening
in tomatoes. It is influenced by many factors, including: temperature, maturity stage,
atmosphere and storage time. Tomato color is sometimes determined using sensorial
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methods: however. instrumental methods using colorimeter provide quantitative and
more effective ways to determine a color index. Ripening in fruits is a complex
phenomenon which affects chemical and physiological properties as function of time
with global and local variations than can be better described in probabilistic terms.
Measurements of resonance frequencies and their relation with elastic properties in
fresh commodities with like-spherical or spheroidal shape were first described by
Abbott et al. [1]. and the formulation was later modified by Cooke [2]. Several
techniques have been studied in the past to excite the resonance frequencies in fruits
including force vibration [1] and acoustic impact tests (introduced by Yamamoto
Iwamoto & Haginuma [3]). The relation between the resonance frequency and the
elastic properties of fruit with spherical shape is given by

Sc=f2‘m%, n
where Sc is typically referred to as stiffness coefficient, f is the dominant frequency
and m is the bulk mass of the fruit. The determination of the dominant frequency fcan
be obtained by the acoustic impact test which consists of impacting the fruit with a
small spherical object and recording the resonance vibration signals to determine the
frequency spectrum [4]. In like-spherical fruits such as tomatoes two main types of
vibration modes, assuming free boundary conditions, can be found: spherical modes
and torsional modes. Some modes such as torsional can be filtered out using
microphones, which are only sensitive to spherical vibration modes. However, a large
uncertainty in the stiffness coefficient measurements can be found [4]. Although
under controlled laboratory conditions they have been consistent and controllable
results there is still presence of uncontrollable sources of noise [4].

The integration of sensor data using data fusion can be either complementary or use to
enhance the response of a single sensor. In the area of robotics sensor fusion has been
thoroughly investigated and used to overcome limitations of individual sensors [5].
Several schemes have been proposed to effectively develop and assess a methodology
to integrate data [6]. The use of data fusion in robotics spans from improving position
location and distance assessment to pattern recognition combining information from
different sensors [S]. Artificial neural networks can be used for this fusion, and
statistical models with probabilities help to integrate data at the evidential level, this
level makes use of Bayesian approach theory.

Attempts to solve the problem of ripening classification have been mostly focused on
single sensors: however, there is not yet a complete solution. Recently, application of
am'ﬁcial intelligence has been studied for sorting of fruits (i.e. [7] and [8]). Sensor
fusion methodology has been applied using different non-destructive techniques
including image analysis, near-infrared spectrophotometer, and colorimeter, among
9thers. In this work, data fusion from different non-destructive sensors'is used to
improve the quality control of ripening in tomato fruit. The importance of data fusion
of different sensors in foods such as melons and peaches to asses quality [8]. Sensor
characteristics are a limiting factor in the performance of a data fusion system and
good‘sensors are needed to obtain reliable results.

In this work, data integration and a fusion scheme is used to gather information of a
pr0p(?sed sensory system to produce a more complete solution to the ripening
f:laSSIﬁcation problem. Two independent sensors, a novel non-destructive acoustic
impact [4] and a colorimeter technique [9] provided three different features: firmness,
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color and luminosity. A PNN is used for data fusion and results are analyzed by a
Bayesian classifier.

2 Probabilistic Neural Networks

Probabilistic Neural Networks (PNN) substitute the sigmoidal activation function
commoply found in neural networks by an exponential function. Therefore, PNN
results in a neural network that could compute nonlinear decision boundaries and
approagh the Bayes optimal [10]. PNN learns from a training data set, which is a
col'le.ctlon of examples previously identified, belonging to specified classes. This
training data are vectors with a determined number of components or elements each

of therr} corresponding to the same number of features, each feature is obtained from a
determined sensor.
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Figure 1. Probabilistic Neural Network

As described in Figure 1, a typical arrangement for a PPN is composed of two layers.
The first layer contains input nodes where each receives an input value from the
corresponding element in the input vector x and produces vectors indicating how
close the input vector x is to the known pattern. This input vector data, labeled x , is a
vector with the same number of elements or features as the training vector data. The
second layer produces a vector of probabilities which is the sum for each class
contribution in the first layer. Finally a hidden node with an activation function is
given by

o
g= exp(—7) ©)

1

where p is the distance between input vector and the i™ is the training data. This

function g is a Gaussian function which returns a value of 1 if the input vector X and
training data are equal, and drops to an insignificant value as the distance D,
increases.

Each hidden node is connected to a single class node C;; if the output class of the
input vector X is j, then such node is connected to the ;™ class. Each j-th class node

computes the sum of the activations (using Eq. 2) of the hidden nodes that are
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connected to it (i.e. all the hidden nodes for a particular class) and passes this sum to a
decision node. which outputs the class with the highest summed activation. The
output is the class that X seems most likely to belong to.

It is important to note that we are assuming that o, has the same value for each data,

b s g The sum of the activations for data belonging to a certain class gives rise to a

probabilistic function (linear normalizad combination of the Gaussians centered in
each of the data in that class) and computes the probability of the input vector
belonging to that class. The probabilistic function is written as [10]
i ]
—\x—x,) \x—X,
o nl| o

l M
PO ) = (o) M, ;exP[ 20"

where i (=1, 2. 3) is the corresponding class number, j (=1..... M,) is the pattern
number. X, is the j™ training vector from class i, X is the test vector, M, is the

number of training vector in class i, ¢ is a smoothing factor, which is a variable that
needs to be optimized to obtain the minimum classification error.
Once the optimum o is estimated, then the corresponding probability functions for
each class and the Bayes error can be estimated and compared to error classification
obtained in the PNN.
In the present work, the distance between input vector and the i
D = (x__\‘,’)‘ (x-x J.-The probability function plw, y(using Eq. 3) for each class was
estimated using the experimental data obtained from non destructive techniques
acoustic impact and colorimetry .
The probability functions for each class define decision regions in which boundaries
with the highest probability of misclassification can occur [11]. The Bayes strategies
for pattern classification minimize the expected risk. According to the Bayes decision
rule to assign a pattern X to a class w, with minium error, we have that

(4)

plw, )p(.\'in;)> plw, )p(xlw‘) ki=1 . mk+1,
where p(w,)...., p(w,).are known prior probabilities [11]. The average probability of
error for the case of three classes is given in terms of decision regions in which

vector x falls
plerror)= [ o e + ol
R, i

training data is

wz)d\' + Ip(w_] )p(x]wl )a’x ’ (5)

Iy

which is known as Bayes risk [i2] and x satisfies the following equation

pOw, ) plxw,) > max{p(w. )P, )} with this the Bayes risk becomes the Bayes error,
T ety St

considering Eq. 4. The exact calculation of Eq. 5 for multi-class and multivariate
p.rob]ems is quite difficult, even assuming normal distribution [11]. This is due to the
discontinuous nature of the decision regions. If the intersection area between classes |
and 3 vanishes, then the three-class problem can be approached as a two-class
problem and only the first two terms in Eq. 5 are needed [13].

However, Eq. 5 can be approximated analytically to give an upper and lower bound
on the error [11]. These can be estimated in terms of the Bhattacharyya bound, which
is a particular case of Chernoff bounds as follows
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Figure 2. Classification error in terms of the Bhattacharyya distance. Solid lines are the
theoretical classification error bounds. The estimate of the classification error for data in the
Univariate case using Eq. 6 is shown by the open circles and for the Multivariate case by open
triangles. The theoretical probability of error as given by Eq. 8 is shown by the dashed line

However, Eq. 5 can be approximated analytically to give an upper and lower bound
on the error ([14]). Chulhee and Choi [14] presented an approach to estimate the
classification error &€ in the case of two classes (in this case plw,) = p(w,y=12)%

which reduces to the probability error for low values of Bhattacharyya distance D,
[12], [13]. [14], given by

]

TR

L 7
V|
where £, andZ, (/ = 1,2) are the mean and covariance for each multivariate class.

The approach uses a fitted polynomial curve obtained using different class statistics.
The polynomial curve is described as [14]

E =40.219-(70. 019) D, +(63. 578)D,,: -(32.766) D, '
(8)
+(8.7172) D,* -(0.91875) D,
this equation is valid only for p, <3 (see Flgure 2) and shows f n the number

of features increases, the classification error diminishes significai.

For a three-class problem, Garber and Djouadi [12] introduced a techmque to estlmate
bounds for the classification error ( £ ). such bounds are expressed as a function of
pairwise classification errors which for a three-class problem is evaluated by adding

| =]
By --g(//,—/l)[z +—;] (/l:~/n)+%ln-
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the probability error resulting in three combinations of pairs of classes. The
classification error for deciding among the original three classes & is bounded from

above and below as ([12])
3

o s S | 2
£ 2;2 Z(] ~J1- E\'p(—ZD,:)),S,,m < % R Y Exp(-D,,) . 9)

1=l =41 1=1 1=+

where 5 (i,j =1, 2,3)is the Bhattacharyya distance corresponding to the events w,

and w, , each can be calculated by using Eq. 7 in a general form changing mean and
covariance for each class (p, = p,, USINg x> ands. ;X5 D, =D, using sz,

u:andy_l.g:)([]2],[l4]).

Probabilistic Neural Network for a three-class problem was implemented for
experimental data taken from whole tomato samples. The results obtained for the
implementacion of the PNN and for the calculation of the Bayes risk is discussed in
the next section. In the present work, the error probability of classification is
calculated by using the Bayes theorem implemented in the Probabilistic Neural

Network. The probability function p(x|w,) , which corresponds to the Parzen window

in the PNN for each class, can be used for the calculation of Bayes error by using Eq.
5. the Bayes error becomes Bayes risk [12] when the PNN is at the stage of decision

node.

3 Experimental Description

In this section, materials and methods for the classification of tomatoes are described
in detail. Whole tomato fruit samples, Charleston (“Lycopersicum esculentum”), were
obtained from a greenhouse located in Sonora (México). The tomatoes were
harvested and preliminarily sorted with colorimeter leaving only those with roughly
Breaker color (USDA classification). A total of 236 whole tomato samples were used
in the experiment. The experimental considered a storage temperature of 20 °C. The
relative humidity of the cold chamber was 75%. Colorimeter, weight loss and
nondestructive firmness measurements were taken for these samples at selected
testing days.

Color measurements were performed using a Minolta CR 300 colorimeter; three
rep_licas were taken for each intact tomato sample. The equipment provides an
estimate of values L*, a*, and b* recommended by CIE [9] from where a*/b* ratio,
chroma and hue angle = tan-1(a*/b*) can be calculated. Measurements of weight loss
were done using a laboratory weighing instrument, Mettler Toledo model PR2003
D;ltarange ® with readability of 1 mg. The impact acoustic tests were carried out
using the experimental setup described in Figure 3. The specimen was insulated from
exterqal vibrations or noise using a simple plastic foam layer located underneath it,
allowmg the sample to vibrate freely. The impacting force was generated by a
mpchamcal pendulum consisting of a small solid plastic sphere with a 24.9 mm
diameter, 3.09 grms in weight and a string of 180 mm in length. The impacting sphere
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was released from an angl:e of 6 =30 degrees as shown in Figure 3. Acoustic signals
were .recorded at two points: 0 degrees and 90 degrees in relation to the impact
direction of the pendulum. The signals were captured by a sound sensor model CI-

6506B manufactured by PASCO Scientific and then digitalized by the Science
Workshop 500 Interface from the same manufacturer. Finally, signals were post-
processed by a personal computer equipped with FFT to determine the dominant

resonance freqyency. Three repetitions of impact acoustic tests were performed at
each impact point to total 6 measurements per sample.

Pendulum
Colorimeter
’
’
"’ 0 Sound sensor
/ \
\ ’l A/D converter
~
Foam PC SRR
6 =300

Figure 3. Experiment setup for impact acoustic and colorimeter tests on tomato samples

Three classes were chosen for training of the PNN, a total of 239 data vectors were
considered for classification analysis. Data was sorted into three classes based on time
in storage, Class 1: from days 0 to 6, class 2: days 6 to 15 and class 3: days 15 to 27.
Then, 45 neurons (with known class) were randomly chosen for training data in the
input layer. The features were put in vectors as follows: [a*/b*, Sc, L*]. Matlab 7.0 ®
was used for the design and construction of the PNN.

4 Results

Tomato samples at a temperature of 20°C degrees were studied. Data taken from the
acoustic impact and colorimeter sensors for the tomato samples was presorted into
two sets: training data and input data vectors [a*/b*; Sc; L*]. The data set consisted of
239 data vectors taken from samples at 20°C; 45 vector data were used for training the
network and 194 for classification. The optimum o value for the three features (a*/b*,
Sc, L*) with the best classification results was found at ¢ = 0.1. It is important to note
that when only one feature is considered the corresponding error classification is
about 60%. This is better observed in Figure 4, where a reduction in error
classification from 60% to 10% as a function of number of features was estimated
using the proposed PNN.

It can be also observed, that the results in Figure 5 agree with those in Figure 4.
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Figure 4. Classification error by using the PNN, in terms of the number of features. The
network was implemented on data of tomatoes fruits and it can be obser_ved‘ that the
classification error diminishes considerably going from the univariate case to multivariate case
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Figure 5. Results for the classification error in function of ¢ for data belonging to three classes
and three features (a*/b*, Sc and L*). 45 vector data at 20° C were used for training and 239
input data vector for classification for tomato samples at 20° C were considered. The minimum
error was obtained with a value of 6=0.1
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The class'iﬁcation error in terms of the smoothing parameter ¢ in the PNN design is
shown Figure 5 which was estimated as the number of times that the network
incorrectly classified a known sample divided by the total number of input data. The
results are lhg fusion of the three vector features corresponding to two sensors.

The probability functions for the multivariate multiclass case were obtained for each
class and compared with the Bayes error classification calculated for 6 = 0. (Eq.9).
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Figure 6. Probability functions corresponding to color parameter L* where data correspond are
at 20° C. 45 training vector data and 239 input vector data. at 20° C. for classification were used
for all figures with probability functions for three classes (class | for square points. class 2 for
circle points. class 3 for triangle points). The ligures correspond to different values of O . a)
0=0.1.50-05
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The intersection between the corresponding curves probability functions for L*
(luminosity) is more significant as the value of the o increases (Figure 6).

The calculation of the Bhattacharyya distance and the classification error for the
univariate and multivariate cases indicates that in the univariate case. Bhattacharyya
distance between classes 1 and 3 is larger than 3.0. Therefore, bounds in Eq. 6 are
valid to estimate the mean classification error; same criteria was used for classes 1-2
and 2-3 as defined for parameter L*. The classification error for classes 1-2 and 2-3
were estimated as 11% and 12% respectively. For parameter Sc the Bhattacharyya
distance is p, = 0.7, therefore, the approximation given by Eq. 8 was used; the results

show that the classification error is about 13%. Curves of probability functions of L*
feature (Figure 6) show a clear interference between classes 1 and 3. However, this is
reduced after data fusion (multivariate) which indicates that the error between classes
| and 3 is close to zero,g,, ~0, here it can be seen that classification error is

diminished from 13%, for the parameter Sc, to almost zero considering three
parameters (ab*, Sc, LY).

The total error in the classification gives the result of 10% considering Eq. 9, in this
case the corresponding Bhattacharyya distances for classes 1-2, 1-3 and 2-3 are D,
=1.93 (using Eq. 8 ¢, =2.6% ), D3y =18.9 (using Eq. 8 ¢, = 0) and D, =1.77 (using

Eq. 8 £,,=3.3%). This total error can be calculated by using Eq. 10 and the

corresponding classification errors calculated for pairs of classes. Classification error
obtained by PNN for two sensors and three features is in agreement with results of
Bayes risk. This consideration can stand for three features and ¢ = 0.1 as discussed

above.

5 Conclusions

Methodologies of neural networks commonly used in the area of robotics were
implemented to improve quality control of fruits. A novel non-destructive acoustic
impact and a colorimeter technique provided three different features: firmness, color
and luminosity were used. The tomato fruit data of these two sensors was
implemented in a probabilistic neural network for classification. The error
classification rate was reduced from 60% to 10% using a Probabilistic Neural
Network. The effect of neural network parameters was explained by an analysis of
Bayes error, indicating the degree of uncertainty of multiple sensors during ripening
stages. This is observed starting with 6= 0.5. The acceptance rate results as function
of feature factors was analyzed. The results found in tomato fruits can be potentially
extrapolated to other postharvest fruits.
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